Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex.
نویسندگان
چکیده
Cortical spreading depression (CSD) is associated with release of arachidonic acid, impaired neurovascular coupling, and reduced cerebral blood flow (CBF), caused by cortical vasoconstriction. We tested the hypothesis that the released arachidonic acid is metabolized by the cytochrome P450 enzyme to produce the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE), and that this mechanism explains cortical vasoconstriction and vascular dysfunction after CSD. CSD was induced in the frontal cortex of rats and the cortical electrical activity and local field potentials recorded by glass microelectrodes, CBF by laser Doppler flowmetry, and tissue oxygen tension (tpO(2)) using polarographic microelectrodes. 20-HETE synthesis was measured in parallel experiments in cortical brain slices exposed to CSD. We used the specific inhibitor HET0016 (N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine) to block 20-HETE synthesis. CSD increased 20-HETE synthesis in brain slices for 120 min, and the time course of the increase in 20-HETE paralleled the reduction in CBF after CSD in vivo. HET0016 blocked the CSD-induced increase in 20-HETE synthesis and ameliorated the persistent reduction in CBF, but not the impaired neurovascular coupling after CSD. These findings suggest that CSD-induced increments in 20-HETE cause the reduction in CBF after CSD and that the attenuation of stimulation-induced CBF responses after CSD has a different mechanism. We suggest that blockade of 20-HETE synthesis may be clinically relevant to ameliorate reduced CBF in patients with migraine and acute brain cortex injuries.
منابع مشابه
Vasoconstrictive neurovascular coupling during focal ischemic depolarizations.
Ischemic depolarizing events, such as repetitive spontaneous periinfarct spreading depolarizations (PIDs), expand the infarct size after experimental middle cerebral artery (MCA) occlusion. This worsening may result from increased metabolic demand, exacerbating the mismatch between cerebral blood flow (CBF) and metabolism. Here, we present data showing that anoxic depolarization (AD) and PIDs c...
متن کاملPronounced hypoperfusion during spreading depression in mouse cortex.
We studied unique cerebral blood flow (CBF) responses to cortical spreading depression in mice using a novel two-dimensional CBF imaging technique, laser speckle flowmetry. Cortical spreading depression caused a triphasic CBF response in both rat and mouse cortex. In rats, mild initial hypoperfusion (approximately 75% of baseline) was followed by a transient hyperemia reaching approximately 220...
متن کاملCortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling.
Cortical spreading depression (CSD) is a pronounced depolarization of neurons and glia that spreads slowly across the cortex followed by a period of depressed electrophysiological activity. The vascular changes associated with CSD are a large transient increase in blood flow followed by a prolonged decrease lasting greater than 1 h. Currently, the profile of functional vascular activity during ...
متن کاملSubarachnoid Hemorrhage, Spreading Depolarizations and Impaired Neurovascular Coupling
Aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences on brain function including profound effects on communication between neurons and the vasculature leading to cerebral ischemia. Physiologically, neurovascular coupling represents a focal increase in cerebral blood flow to meet increased metabolic demand of neurons within active regions of the brain. Neurovascular coupling is ...
متن کاملNeurovascular coupling in rat brain operates independent of hemoglobin deoxygenation.
Recently, a universal, simple, and fail-safe mechanism has been proposed by which cerebral blood flow (CBF) might be coupled to oxygen metabolism during neuronal activation without the need for any tissue-based mechanism. According to this concept, vasodilation occurs by local erythrocytic release of nitric oxide or ATP wherever and whenever hemoglobin is deoxygenated, directly matching oxygen ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 6 شماره
صفحات -
تاریخ انتشار 2013